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Abstract - Tracking closely spaced objects with

resolution limited sensors is a difficult problem. One way

to address this issue is to track these targets individually,

and employ relatively complex data association

approaches as a means of pairing detections and tracks.

The algorithm outlined in this paper takes a different

approach, and instead estimates the group velocity using

an unscented Kalman Filter (UKF). The UKF state

estimate is then employed within a particle filter, which

estimates the distribution of objects within the group. It

is shown that this approach can be very effective,

especially for groups of irregularly spaced objects.

Keywords: Tracking, merged measurements, multiple

measurements, tracking, unscented kalman filter, particle

filter, surface radar.

1 Introduction

In many instances, sensor performance can be limited in

resolution and/or update rate. Under these conditions, the

association of data to tracks can be extremely problematic,

especially when there are multiple, closely spaced objects.

Indeed, issues of limited power, resolution and update rate

are very important when considered in the context of

networked sensor grids.

Thus, in addition to the normal problems experienced

with intermittent target detection, tracking algorithms also

need to deal with the so-called "merged measurement" [1]

problem. This phenomenon occurs when multiple targets

fall in the same resolution cell, producing only a single

detection or return. And while merged measurements also

present a problem, multiple measurements can also result

from a single object, especially for slow sensor update

rates. Indeed, the purpose of the algorithm presented in

this paper is to deal with these two difficulties.

Various methods have been proposed to deal with

these phenomena, including multiple hypothesis tracking

and various probabilistic data association methods. The

method discussed in this paper makes no attempt to

maintain individual tracks, and instead tracks all objects

within a group as a single entity. Once a state space

estimate of the group behavior is obtained, a particle filter

is employed to develop a super-resolution estimate of the
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distribution of objects within the group. This estimate can

then be used to determine raid count, or to get a rough

estimate of the distribution of objects within a group.

These two pieces of information can be vital in the context

of situational awareness, or for targeting purposes.

The motivation for the approach discussed in this

paper was the problem of tracking large numbers of

closely spaced boat targets with a surface search radar [2].

The algorithmic development assumes measurements in a

polar coordinate system, with relatively poor azimuth

resolution and slow update rate. The parameters chosen

for the notional sensor do not correspond to any real

sensor. However, they are commensurate with the

resolution limitations one encounters when dealing with

ubiquitous, inexpensive surface search radar systems.

Another unique aspect of this algorithm is that the

state of the particle filter is itself a probability density

function. This gives rise to a whole host of issues

associated with evaluating the likelihood function, which

is required for the particle filter weight updates.

The steps in the algorithm are as follows. First, the

centroid position of the grouped measurements is used to

update an unscented Kalman filter estimate of the

Cartesian position, velocity and acceleration. This state

estimate is then passed to a particle filter which is

responsible for developing a super-resolution estimate of

the target positions within the group. The state space of

the particle filter is the infinite set of feasible two-

dimensional target probability density functions.  The

particle filter updates are computed by using a two-

dimensional correlation function to estimate the

likelihood.

Note that the data for a particular group track are

assumed to be associated by a prior, independent process.

In this respect, the work in this paper differs significantly

from other work, in which the data association process is

explicitly integrated into the tracking algorithm [3][4].

For many surface search radars, this is done via a

clustering technique with clustering neighborhood size

sufficient to address worst case target dynamics and sensor

resolution issues. Clustering techniques are also popular

for reducing computational load as well [1]. Structuring

the algorithm in this fashion allows it to be easily placed

into an adjunct processor which can work in conjunction

with existing clustering systems.
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2 Measurement Model

The sensor measurements were generated using a

simulation of a single 2-D radar with a rotating antenna

and fixed scan period, but nothing within the algorithm

formulation would preclude the use of multiple sensors.

The parameters of this sensor are shown in table 1:

Table 1, Sensor parameters used to generate target

returns

Parameter Value

Scan/sample period 2 sec

Beamwidth 1.1 deg

Range bin size 120 m
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Referring to Figure 1, if a target is located in the

shaded area, it will be assigned a specific azimuth and

range value. This sensor model more accurately simulates

the noise characteristics (i.e. quantization) that is to be

expected in an actual sensor, than the typically employed

additive gaussian model .  In a radar sensor, the angular1

dimension  is analogous to the 3dB beamwidth, and?)
?V is the range bin size.

Figure 1:  Sensor model

Let this quantization be represented by the following

mapping:

D <ß Ñ œ 0Ð< ß Ñ Ð Ñ5
w w( 1) )

where  represents the radial distance to an object,<w

and represents the azimuth to the object, before)w

quantization. The mapping is defined such that multiple

objects in the same range and azimuth cell will result in

only a single detection for that cell. Furthermore, as long

as a target is within the beam (i.e. the beam is swept across

an object and dwells upon it for a finite amount of time ),

target returns will result. This means that a single target

may produce multiple detections. These sensor sampling

and quantization effects are many times ignored when

assessing track filter performance. As will be subsequently

1 It is important to note that the UKF filter models

employ a gaussian model for the measurement error,

however, the  employed in the filter use themeasurements

quantization noise discussed herein.

shown, they have a great effect on tracking performance,

especially in the context of the group tracking problem.

3 Unscented Kalman Filter

Implementation

The UKF formulation chosen herein relies on filtering an

averaged group position. Proximate measurements

associated with a single group and arriving on the same

scan are averaged, and provided as a single measurement

to the filter. If  measurements are used in the centroidRD

operation, an approximation to the measurement noise

variance in range and angular coordinates is given by:
? ?@V
"#R "#R
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D D
, and , respectively . The nonlinear measurement2

equations for the UKF are given by the following

equations:
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With the measurement vector defined as:
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and the measurement noise covariance approximated

by:
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Even though the applied part of this research is

directed toward tracking groups of boats, a simple six state

(employing two independent three-state models) dynamic

model was chosen. While there are specific boat dynamic

models (see [7] for an example), the group dynamics of

the centroid of a number of boats will, in general, be quite

different from that of a single object. Therefore, the state

vector and state transition matrix are given by:
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2 This is the resulting variance of the average of RD

independent measurements.
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Where  is the sample period between centroid?X
estimates. The process noise covariance was defined as:
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with a white noise model assumed:
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In equation (11),  is a design parameter - for the#
results discussed in this paper, . It should be# œ !Þ!&
noted that the centroid of the group of objects traveling

together will have less dynamic capability than a single

object.

Equations (2) - (12) were employed in the UKF

formulation detailed in [8], along with values of

! , "œ !Þ!!!"ß œ !ß œ #Þ  A covariance expansion term
of 1.05 was used at each iteration of the filter to avoid

divergence of the estimate. The latter is very likely to

occur in the event of an intra-group crossing maneuver

after the filter estimates have settled.

4 Particle Filter Implementation

The intent of the particle filter is to estimate the

probability density function of objects within the group

track (in Cartesian coordinates). But with the current

algorithm structure, the best that can be done is to estimate

the probability density function (PDF) of the centroid, and

hope that peaks within the PDF somehow correspond to

object locations. This is not an unreasonable assumption.

Each particle within the filter is determined by its

weight and support points. The number of support points

for each particle is given by , with  being the totalQ R
number of particles. Each particle is comprised of a set of

support points:
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Where  is the  coordinate of support point ofB B 4‡
4ß5

3 >2

the particle on the iteration,  is defined in an3 5 C‡>2 >2
4ß5

3

analogous fashion. Note that from this point forward, the

dependence of on  is implicitly assumed.93
5 ÐBß CÑ‡ ‡

This work uses the bootstrap particle filter

formulation, in which the update step is accomplished via

a straightforward propagation of the particles through the

state space. This is accomplished by updating the support

of each particle, under the assumption that each particle

corresponds to a tracked object, that travels with

approximately the same group velocity as determined by

the centroid. Therefore, the support for each particle is

updated via the mapping:

9 95 5�"
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This mapping is completely determined by the update

of the support points in Cartesian coordinates:
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Since the individual objects within the group do not

always move in perfect synchrony with the centroid of the

group, a small noise term ( ) is added to account for this%
uncompensated movement. The latter is assumed to be a

RÐ!ß Ñ5:  distributed random variable. A relationship may

also exist between this term and the covariance estimate

developed with the UKF, but this relationship was not

developed in the course of this research.

As can be seen from equations (13) - (16), each

particle can be envisioned as a two-dimensional PDF with

support points that shift with each filter update. The

posterior density is given by the weighted sum of the

particles:
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With the particle weights defined by   is the setA ß D5
3

5

of sensor measurements for theÖÐ< ß Ñß 6 œ "áR ×6 6
5 5 D@

current group track. Since the prior is used as the

importance sampling distribution, the weight update

equation becomes:

A œ A :ÐD l Ñ Ð Ñ5�" 5 5
3 3 3

5 9 18

Because of the formulation chosen for this filter, an

exact evaluation of  is difficult to implement.:ÐD l Ñ5 5
39

Therefore, it is  helpful to think of the proposed

distribution of object measurements resulting from a

particular particle as a discrete PDF with support defined

by equation (13).

The support points can then be transformed into polar

coordinates via equations (4) and (5), and then quantized

using the mapping defined in equation (1). The resultant

distribution of target returns for a particular particle is now

defined in polar coordinates, and is denoted by ( ,9 )3
5 <ß Ñ‡ ‡

with support:

 199 )3
5 4ß5 4ß5
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The result can be envisioned as a PDF, which can

then be compared to the PDF obtained from the actual

sensor measurements. The most intuitive candidate for

evaluating this likelihood is the chi-squared test.

Unfortunately, one limitation of this test is its inability to



deal with zero likelihood events, as well as events with a

relatively small frequency of occurrence [5]. Another

likely candidate is the Kolmogorov-Smirnov test.

However in practice, this measure tends to be overly

optimistic in its evaluation of the correspondence between

two distributions, and thus produces extremely slow

convergence to the proper weight values.

Given these difficulties, another goodness-of-fit

measure was employed. Since each particle is a two-

dimensional PDF, a straightforward visual analogy would

suggest the use of the two-dimensional correlation

function, which can be applied to the two-dimensional

histogram, which is evaluated over the total feasible

support of the particles (in measurement space) for the

group track. Let  denote the probability of occurrenceE7ß8

(on iteration which is implicitly assumed from this point5ß
forward) for the proposed particle density  at the ,7 8 th

histogram cell, computed for the support points given by

(19). Likewise, denotes the probability densityF7ß8

obtained from histogramming the measurements on

iteration  (from equation (1)). The two-dimensional5
correlation of these two images will be given by:
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Where is the number of bins in the  dimension,R 77

R 8 E8 is the number of bins in the  dimension,  is the

mean of matrix  and  is the mean of matrix .  ThisE F F
function is defined on , and hence a scaled versionÒ . "ß "Ó
of the correlation is used, along with an acceleration term

that speeds convergence of the weights.

Thus the likelihood is computed from the equation

below:

:ÐD l Ñ ¸ Ð Ñ
� "

#
5 5

3
+

9
3Œ � 21

Where  is the aforementioned acceleration term, usually+
taken to be on the interval 1 . Substitution of (21) intoÒ ß %Ó
(18) gives the weight update relationship.

As will be seen in subsequent sections, the combined

UKF/Particle filter was applied in two different scenarios.

In both cases, it will be shown that a performance increase

results. However, the application of these filters requires

that a number of design parameters be selected. The values

for these parameters, as used in the particle filter are

shown in table 2.

Table 2, Parameters used for the particle filter

Parameter Value

0.010

5

100

12

12

4

5:

7

8

Q

R

R

R

+

The standard assumption of uniform weights

(  is also used.A œ R ß a3Ñ!
3 ."

5 Scenarios

Two scenarios will be presented which show the potential

advantage of applying the proposed hybrid tracking

approach. One employs a group of targets moving in

approximate synchrony, until separation and subsequent

resolution of individual objects begins to occur at 250 sec.

into the scenario. The other scenario has a group in which

two group members execute a crossing maneuver. It is

assumed that in both scenarios, all the objects are tracked

as a single group, and that their close spacing, along with

the resolution of the sensor, make this a necessity.

Figure 2: Four inbound objects scenario

Figure 3: Three inbound w/two crossing objects



6 Findings

Clearly, it is difficult to synthesize the number of tracked

objects from the particle filter estimate of the state .3

However, it is possible to compare the estimate of the

resultant target PDF to that obtained when using the

centroid estimate (without any particle filtering). This was

accomplished by computing the distance between the

centroid/UKF estimates of the swarm position to the

closest true object position. Likewise for the particle filter,

the distance from the support point of the most probable

object location (as defined by the maximum of the

posterior - equation (17)) to the closest object position was

computed. Henceforth, this number will be called the

minimum distance (MD) metric. Plots of this error metric

(in meters) for the two cases discussed in the previous

section are shown in Figures 4 and 5.

Figure 4: Performance, four inbound objects

Figure 5: Performance, three inbound objects

3 Such an estimate would require the examination of

the two-dimensional PDF for local maxima. Accurate raid

count would require an accurate mapping of these

maxima, which is a difficult proposition.

The most performance increase is evident when the

objects are irregularly distributed throughout the group

and when there is some partial resolution of group

members (figures 3 and 5). There is less payoff for

applying the algorithm to large, regularly spaced target

formations (figures 2 and 4). But note for this latter

scenario, that there is even increased performance before

the objects are partially resolved at 250 sec.

Note as well the relatively slow settling times of the

filters. This is due in part to parameter choices, as well as

the limited resolution and update rate of the notional

sensor. Indeed, if this algorithmic approach has a

drawback, it is certainly its relatively slow convergence

time. However, it should also be noted that there were

relatively few particles used to estimate the object

positions (in this case, 100). This was due to the typical

limitations of computer hardware, and it is expected that

an increase in the number of particles, as well as other

parameters associated with computing the likelihood

(equation (21)) would enhance the performance of the

hybrid filter.

Another finding is that the UKF only performs on par

with the simple, unfiltered centroid estimate. This is

chiefly due to resolution effects, and the relatively slow

settling time of the filters (for an example of this, see

figure 4). Table 3 summarizes the performance difference

between the UKF and the centroid. It shows little or no

performance gain from applying the UKF to obtain a

better estimate of group position. However, what the UKF

does provide (in the context of this algorithm), is an

estimate of the group velocity, which is integral to the

particle filtering estimate.

Table 3, Performance of UKF vs. Centroid Track

RMS Error in km Four objects Three objects

UKF (X) 0.02141 0.04672 

Centroid (X) 0.01722 0.05174

UKF (Y) 0.00956 0.03616

Centroid (Y) 0.01010 0.02101

The mean and root mean square (RMS) of the MD

metric was also computed for each scenario, and these

errors are summarized in table 4. It's quite clear that there

is a significant advantage accrued by adding the particle

filter estimate (up to a factor of 4 improvement). And as to

be expected in light of the previously discussed

comparison of the UKF and centroid, there is relatively

little performance difference when using the UKF to

estimate a true object location versus using the centroid.

Table 4, Performance of  Particle Filter, UKF, and

Centroid as assessed by MD metric.

Mean/RMS Four objects Three objects

error in km

PF 0.08403/0.04402 0.06880 /0.05296

UKF 0.11945/0.03724 0.25241/0.12932

Centroid 0.12676/0.04052 0.25927/0.13030



Note that a probability of detection of 1 was used to

obtain these results. A lower probability of detection

(and/or higher false alarm rate) would also adversely

affect convergence time.

To summarize, the results indicate that the hybrid

particle/UKF filtering approach provides improved

performance over simply using the centroid. This is a

valuable finding, because it suggests that the performance

of many 2-D surface search radars  can be improved via4

the addition of an add-on approach similar to the one

outlined in this paper. Such an approach would require

minimal intervention into the front-end processing of the

radar, and could work in conjunction with existing cluster-

based trackers.

7 Conclusion

The hybrid UKF/Particle filter approach discussed in this

paper is effective for improving the ability of a sensor to

develop more accurate object position estimates in a group

tracking framework. Within this context, the two largest

issues are multiple detections per target, and merged

detections for objects in the same resolution cell.

The hybrid UKF/particle approach showed up to a

factor of 4 improvement in estimation error over the

centroid, so there is a tangible benefit to using this

approach to more accurately localize objects. The main

drawbacks are its processing intensive nature, and the

relatively long sample histories that are needed to develop

the particle filtering estimate. Interestingly, there was

relatively little performance gain associated with using the

UKF versus using the centroid estimate.

It should also be noted that this approach would work

well in the context of an adjunct processor, to improve

object resolution in group and cluster based trackers.

These trackers are used in many surface search radars.

And while it seems as though object count might be

difficult to synthesize from the particle filter estimate,

more work could be done in postprocessing the particle

filter output to extract additional useful information.
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